

Brick Testing

🜔 Website : mattestlab.com

Vishal Raiyani (M.Tech)

DETERMINATION OF COMPRESSIVE STRENGTH OF BRICKS

STANDARD: IS: 3495 (Part-1) - 2019

This standard (Part 1) covers the procedure for determining of compressive strength of burnt clay building bricks.

FOR SOLID BRICKS

APPARATUS

1. Compression testing machine (CTM).

PRE-CONDITIONING

- Remove unevenness observed in the bed faces to provide two smooth and parallel faces by grinding.
- Immerse in water at room temperature for 24 hours.
- Remove the specimen and drain out any surplus moisture at room temperature.
- Fill the frog (where provided) and all voids in the bed face flush with cement mortar (1:3).
- Store under the damp jute bags for 24 hours followed by immersion in clean water for 3 days. Remove, and wipe out any traces of moisture.

PROCEDURE

- Place the specimen with flat faces horizontal and mortar filled face facing upwards between two 3-ply plywood sheets each of 3 mm thickness and carefully centered between plates of the testing machine.
- ✤ Apply load axially at a uniform rate of 7 ± 1 N/mm² per minute till failure occurs and note the maximum load at failure.
- The load at failure shall be the maximum load at which the specimen fails to produce any further increase in the indicator reading on the testing machine.

FOR PERFORATED BRICKS

APPARATUS

Compression testing machine.

PRE-CONDITIONING

- Immerse the specimen in water at room temperature for 24 hours.
- ◆ Remove the specimen from water and drain out any surplus water.
- No mortar shall be filled in perforations and no mortar capping shall be provided.

PROCEDURE

- Place the perforated faces of the brick between two 3-ply plywood sheets each of 3 mm thickness and carefully centered between the plates of the testing machine.
- ✤ Apply the load axially at uniform rate of 7 ± 1 N/mm² per minute till the failure occurs and notes the maximum load at failure.
- The load at failure shall be the maximum load at which the specimen fails to produce any further increase in the indicator reading on the testing machine.
 Engineering Services LLP

NOTE

In place of plywood sheets plaster of Paris may be used to ensure a uniform surface application of load.

-- End of SOP --

DETERMINATION OF WATER ABSORPTION OF BRICKS

STANDARD: IS: 3495 (Part-2) - 2019

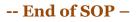
 This standard (Part 2) covers the procedure for determining the water absorption of burnt clay building bricks.

GENERAL

- The dimension shall be measured to the nearest 1 mm.
- ✤ All apparatus and testing equipment shall be calibrated at frequent intervals.
- ✤ The number of specimens for the test shall be selected according to IS 5454.

APARATUS

✤ A sensitive balance capable of weighing within 0.1 percent of the mass of the specimen, a water tank and a ventilated oven.


PRECONDITIONING

Dry the specimen in a ventilated oven at a temperature of 105 to 115°C till it attains substantially constant mass.

Cool the specimen to room temperature and obtain its weight (M₁) Specimen warm to touch shall not be used for the purpose.

PROCEDURE

- Immerse completely dried specimen in clean water at a temperature of 15 to 30
 °C for 24 hours.
- Remove the specimen and wipe out any traces of water with a damp cloth and weigh the specimen.
- ✤ Complete the weighing within 3 minutes after the specimen has been removed from water (M₂).

DETERMINATION OF EFFLORESCENCE OF BRICKS

STANDARD: IS: 3495 (Part-3) - 2019

This standard (Part 3) covers the procedure for determining the efflorescence of burnt clay building bricks.

GENERAL

- ✤ The dimension shall be measured to the nearest 1 mm.
- ✤ All apparatus and testing equipment shall be calibrated at frequent intervals.
- ✤ The number of specimens for the test shall be selected according to IS 5454.

APPARATUS

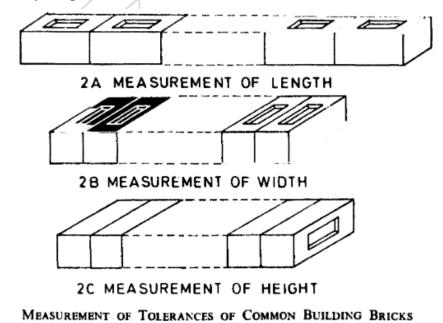
- A shallow flat bottom dish containing sufficient distilled water to completely saturate the specimens.
- The dish shall be made of glass, porcelain or glazed stoneware and of size 180 mm * 180 mm * 40 mm depth for square shaped and 200 mm dia. * 40 mm depth for cylindrical shaped.

PROCEDURE

- Place the end of the bricks in the dish, the depth of immersion in water being 25 mm.
- ✤ Place the whole arrangement in a warm 27 ± 2 °C well ventilated room until all the water in the dish is absorbed by the specimens and the surplus water evaporates.
- Cover the dish containing the brick with suitable glass cylinder so that excessive evaporation from the dish may not occur.
- When the water has been absorbed and bricks appear to be dry, place a similar quantity of water in the dish and allow it to evaporate as before.
- Examine the bricks for efflorescence after the second evaporation and report the results.

DETERMINATION OF TEST FOR DIMENSIONAL TOLERANCE

STANDARD: IS: 1077-1992


This standard covers the procedure for determining the whether the bricks used for construction are of specified dimensional tolerance.

APPARATUS

1. A measuring steel tape.

PROCEDURE

- Select 20 or more bricks at random from the stack.
- Remove all the blisters, loose particles of clay and small projections from the surface of bricks.
- Arrange a specimen of 20 bricks upon a level surface successively in contact with each other and in straight line as per 2A, 2B & 2C below for measurement of Length, width & height respectively.
- The overall length of the assembled bricks shall be measured with a steel tape sufficiently long to measure the whole row at one stretch.

ACCEPTABILITY

The actual dimensions of bricks when tested should be within the following limits per 20 bricks:

Modular Bricks: Length 3800 ± 80 mm

Width $1800 \pm 40 \text{ mm}$

Height 1800 ± 40 mm (For 90 mm high bricks) 800 ± 40 mm (For 40 mm high bricks)

Non – modular Bricks:

- ✤ Length 4600 ± 80 mm
- ✤ Width 2200 ± 40 mm
- Height 1400 \pm 40 mm (For 70 mm high bricks)

 $600 \pm 40 \text{ mm}$ (For 30 mm high bricks)

